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Abstract
Time-sensitive data acquisition is critical for many Low-Power Wide-Area Network (LPWAN)
applications, such as healthcare monitoring and industrial Internet of Things. Among the available
LPWAN technologies, LoRa (Long Range) has emerged as a leading choice, offering kilometer-scale
communication with minimal power consumption and enabling high-density deployments across
large areas. However, the conventional ALOHA-based Medium Access Control (MAC) in LoRa is
not designed to support real-time communication over large-scale networks. This paper introduces
LoRaHART, a novel approach that overcomes two critical, under-explored limitations in Commercial
Off The Shelf (COTS) LoRa gateways that impact real-time performance. LoRa gateways have
limited capacity for demodulation of parallel transmissions and their antenna can either transmit
or receive at any time instant. LoRaHART incorporates a hardware-aware super-frame structure,
comprising both Time Division Multiple Access (TDMA) slots as well as opportunistic retransmissions
using Carrier Sense Multiple Access (CSMA), designed to mitigate the above constraints. We use a
partial packing and makespan minimization algorithm to schedule periodic real-time transmissions
efficiently within the TDMA slots, and also develop a probabilistic node contention model for
CSMA retransmissions, providing analytical guarantees for deadline satisfaction under ideal channel
conditions. Our evaluation of LoRaHART on a 40-node LoRa testbed demonstrates significant
improvements over existing solutions in practice, achieving an average Packet Reception Ratio of
98% and a 45% higher airtime utilization than the best performing baseline.

2012 ACM Subject Classification Networks → Network protocols; Networks → Sensor networks;
Computer systems organization → Embedded and cyber-physical systems; Software and its
engineering → Real-time systems software

Keywords and phrases LoRa, LPWAN, Real-time Scheduling, Hardware Constraints

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2025.17

Funding This work was supported by the MoE Tier-2 grant MOET2EP20221-0006.

1 Introduction

The demand for real-time data collection and actuation in IoT networks is rapidly expanding,
with applications spanning from residential to industrial automation. With projections
suggesting up to 50 billion IoT devices by 2030 [1], the shared Industrial, Scientific and
Medical (ISM) spectrum is expected to become increasingly crowded, as more devices compete
for the same bandwidth. Efficient use of this spectrum is therefore essential to address this
growing interference, which will pose significant challenges for time-sensitive applications.
In addition, many IoT devices are energy-constrained, and expected to operate for up to
10 years on a single battery [2]. These devices often operate hundreds of meters or even
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kilometers away from base stations. Therefore, robust, long-range communication protocols
are key to maintain efficient data transmissions. To meet these goals, Low-Power Wide-Area
Networks (LPWANs) serve as the enabling technology [3].

Real-time LPWANs are indeed desirable across multiple domains. In smart cities, they
can enable real-time traffic monitoring and control to prevent congestion and enhance
road safety [4]. In healthcare, they can facilitate remote patient monitoring through timely
communication of critical health data [5]. In industrial automation, they can support machine
monitoring and predictive maintenance [6]. In environment monitoring, they can enable early
detection of forest fires and volcanic activity in remote regions, thereby enhancing disaster
prevention [7]. By delivering kilometers wide communication ranges at milliwatt power
budgets, LPWAN technologies are indispensable for such real-time IoT applications [2, 8].

Several technologies, including LoRa, SigFox, and NB-IoT, are specifically designed for
LPWANs. LoRa, in particular, stands out for its high scalability and versatility. A single
LoRa gateway can handle up to 10,000 nodes [9, 10], and achieves extensive coverage, with
line-of-sight communication distances exceeding six kilometers in some deployments [2, 8, 11].
LoRa’s unique implementation of Chirp Spread Spectrum (CSS) modulation provides both
extended range and high multiple-access capacity. The long-range capability results from the
inherent properties of CSS modulation, while LoRa’s adaptation of CSS allows transmissions
with different Spreading Factors (SFs) to coexist within the same channel—a feature known
as orthogonality. Thus, LoRa’s orthogonality combined with its operation on the unlicensed
ISM band, enables cost-effective, large-scale deployments.

While LoRa’s default ALOHA-based MAC offers simplicity, it is best suited for sporadic,
non time-sensitive applications. Although prior works propose CSMA adaptations for LoRa,
these solutions are not optimized for real-time, latency-sensitive applications [12–14]. This
limits LoRa’s ability to meet the bounded latency requirements necessary for time-critical
tasks. To address these challenges, recent studies have explored MAC designs for LoRa that
aim to achieve real-time performance [15–17]. Real-Time LoRaWAN Scheduler (RTLS), which
enhances the default ALOHA-based MAC layer protocol in LoRa (called LoRaWAN) with a
network-layer earliest deadline first scheduler was recently proposed [15]. However, adding
real-time capabilities to LoRaWAN presents inherent challenges, such as the mandatory
Rx (reception) window required after each uplink message [18]. The Rx window consumes
considerable airtime, which decreases the time available for real-time scheduling. Additionally,
RTPL (Real-Time Communication Protocol for LoRa Networks), which utilizes a TDMA-based
protocol to replace the ALOHA-based MAC layer has also been proposed [16, 17]. However,
the assumptions made in this work regarding the capability of LoRa concurrent transmissions
and the duplex nature of COTS LoRa gateways severely limit the protocol’s applicability and
reliability. In this work, we address the aforementioned shortcomings and propose a novel
MAC layer real-time protocol for LoRa called LoRaHART, making the following fundamental
contributions:

1. We conduct experiments on an industry-grade LoRa testbed to showcase two main
limitations in COTS LoRa hardware applicable for real-time applications. We conclude
that it is essential to respect the uplink-downlink asymmetry and concurrency limits
innate to COTS LoRa hardware – Section 3.

2. We propose a hardware-aware super-frame structure for LoRaHART to enable real-time
periodic transmissions using COTS hardware. In addition to the TDMA-based real-
time uplink messages to the gateway, the super-frame also supports transmission of
acknowledgments from the gateway and provides a CSMA-based opportunistic retransmiss-
ion capability to handle transmission failures – Section 5.
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3. We develop a probabilistic model for node contention in the opportunistic retransmission
window (CSMA) of LoRaHART. This model provides a closed-form expression for the
probability of a successful transmission under given contention parameters, enabling us
to derive probabilistic real-time guarantees under ideal channel conditions – Section 5.1.

4. We tackle the problem of real-time channel and super-frame scheduling in LoRaHART
(TDMA slots) by addressing three sub-problems: packing messages into super-frames,
assigning messages to channels within each super-frame, and computing a schedule for
messages assigned to each channel. We develop an iterative scheduling technique based on
partial packing and makespan minimization with prioritization using the Rate Monotonic
(RM) strategy – Section 6.

5. We extensively evaluate LoRaHART on a 40-node industry-grade LoRa testbed. We
compare our approach with two baselines, RTPL [16] and RTLS [15] achieving an average
improvement of 20% in PRR and 45% in airtime utilization against the best performing
baseline. We also conduct experiments to validate the resilience of LoRaHART in the
presence of faults by injecting spurious transmissions – Section 7.

Related Works. While real-time protocols like RT-Wi-fi [19] and WirelessHART [20] use
centralized TDMA-based scheduling to ensure bounded latency in real-time settings, they do
not have LoRa’s unique capabilities such as SF-based orthogonality which allows multiple
nodes to transmit concurrently on the same channel without interfering.

In LoRa, only a few recent studies have investigated its performance for real-time
applications [7, 15–17,21].

As mentioned earlier, RTLS [15] replaces the default ALOHA protocol with a real-time
scheduler that computes schedules for a multi-gateway LoRa system. In this design the nodes
are first grouped based on their given (fixed) SFs and assigned random channels. Then a
non-preemptive schedule is generated using the Earliest Deadline First (EDF) strategy for
each group. At most 6 concurrent transmissions are possible in this design due to SF-based
groups. This, together with the mandatory LoRaWAN Rx window, implies that the spectral
efficiency of the protocol is very low. Furthermore, absence of retransmission mechanisms to
handle failures makes this design less reliable.

The authors in [16] proposed a MAC layer protocol, namely RTPL, which first maps nodes
to partitions defined by a unique combination of channel and SF. The scheduler then allocates
uplink/downlink transmissions across these partitions using EDF. However, RTPL overlooks
certain critical aspects of LoRa hardware, such as the inability of a LoRa gateway to reliably
demodulate more than 8 packets simultaneously, by allowing up to 48 (6 × 8) concurrent
transmissions. Additionally, RTPL schedules uplink and downlink transmissions concurrently,
disregarding the half-duplex nature of LoRa gateways, which can cause it to miss incoming
uplink transmissions while being occupied with downlinks. RTPL also suggests using multiple
radios to send concurrent downlinks to several nodes at once, which is impractical for a
COTS LoRa gateway. Furthermore, RTPL prioritizes the nodes based on decreasing order
of SFs (high to low) for mapping to partitions, which can penalize nodes transmitting at a
lower SF. In contrast, our scheduling approach prioritizes based on the rate monotonic policy
and uses only the minimum required SF for each node, while respecting the gateway’s ability
of demodulating up to 8 concurrent transmissions.

Burst-MAC [7] addresses sudden burst traffic in LoRa by temporarily adopting a semi-
distributed TDMA approach under high-load conditions. Specifically, Burst-MAC confines
the collision domain of each node within small groups, permitting concurrent transmissions
from multiple such groups. It employs a hash-based method for slot assignment within each
group, eliminating the overhead of centralized schedule distribution typically associated with

ECRTS 2025
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Table 1 Comparison of LoRa-based Real-Time MAC Protocols

Feature LoRaHART RT-LoRa RTPL RTLS Burst-MAC

Underlying MAC TDMA + CSMA TDMA + ALOHA TDMA TDMA TDMA (semi-distributed)
Retransmission Yes (LMAC) No Yes (Slot-based) No Yes (Hash-based)
COTS Limitations Respected Yes (up to 8) No (up to 48) No (up to 48) Yes (up to 6) No (up to 384)
Scheduling Approach RM + makespan heuristic all transmissions in each super-frame EDF with partitioning EDF Hash-based TDMA
Communication Mode Uplink Uplink/Downlink Uplink/Downlink Uplink Uplink
Gateway Duplex Mode Half-duplex Half-duplex Full-duplex Half-duplex Full-duplex

traditional TDMA schemes. However, despite these advantages, Burst-MAC is not designed
for regular (periodic) real-time transmissions, and its allowance of up to 384 (64 channels x 6
SFs) parallel transmissions inherently violates LoRa gateway hardware constraints thereby
raising concerns for real-world deployment scenarios.

The authors in [21] propose a MAC strategy called RT-LoRa, designed for real-time
transmissions in industrial IoT applications. RT-LoRa organizes network time into super-
frames with dedicated, yet flexible, durations for uplink and downlink transmissions. RT-LoRa
accommodates both stationary and mobile nodes and offers three Quality of Service (QoS)
classes, balancing transmission reliability against energy overhead. However, RT-LoRa relies
on an impractical assumption that all the periodic real-time transmissions share the same
generation period and as a consequence are scheduled in every super-frame. Thus, they
do not address the channel and super-frame scheduling problem for more general periodic
real-time transmissions considered in this paper; if the transmission periods are not all
the same, then a deadline-aware mapping of transmissions to super-frames is necessary for
feasible scheduling. In the later sections of this paper we provide a detailed comparison
between LoRaHART and RT-LoRa (Section 4 compares the super-frame structures, Section 6.3
briefly discusses the differences in scheduling requirements, and Section 7.2 presents the
resulting implications on performance).

We summarize the key characteristics of each of the above protocols including LoRaHART,
highlighting their differences and suitability across deployment scenarios in Table 1.

In 802.11-based Wi-Fi, extensive modeling efforts have been made to analyze the collision
probabilities under both saturated (nodes always have backlogged packets) and unsaturated
(with a packet arrival rate) conditions [22–24]. Bianchi’s seminal paper [25] provides a
two-dimensional Markov chain model, which derives success and collision probabilities along
with overall throughput for CSMA/CA (Collision Avoidance). However, these models do
not directly apply to LoRa’s CSMA protocol, where nodes are typically unsaturated and
lack acknowledgments preventing feedback-driven retransmissions. Our work bridges this
gap by developing a probabilistic model tailored to LoRa’s CSMA contention, providing an
analytical framework for transmission success probabilities.

2 A Primer on LoRa

In this section, we present a brief background on the LoRa physical layer, highlighting
its distinctive advantages and the role of LoRa Channel Activity Detection in enhancing
communication efficiency [26].

A typical LoRa network consists of many nodes distributed over a large geographical area,
all communicating with one or more gateways. An uplink (UL) refers to a communication
from a node to a gateway, whereas a downlink (DL) is a communication from a gateway to a
node. Downlinks are required to deliver acknowledgments (ACKs) to nodes.

LoRa communication takes place over the ISM band and the specific band a network
utilizes is a regional parameter ; for instance, in the US, LoRa uses the 900 MHz ISM band.
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LoRa segments the available ISM band into multiple channels (more specifically, frequency
channels), each capable of supporting both uplink and downlink communications.

LoRa and Orthogonality. The strength of LoRa lies in its use of Chirp Spread Spectrum
(CSS) Modulation. CSS provides LoRa a competitive edge over other LPWAN technologies
by facilitating longer communication distances and higher multiple access for networks.
LoRa’s physical layer supports simultaneous non-disruptive transmissions on the same
channel through the use of different Spreading Factors (SFs) known as orthogonality [27–30].
Orthogonality plays a key role in enhancing multiple access in LoRa networks and differentiates
it from the rest of LPWAN modulations. Orthogonality of LoRa significantly enhances
network coexistence and multiple access by allowing concurrent transmissions within the
same channel. LoRa supports six SFs, ranging from SF7 to SF12. A lower SF allows smaller
airtime and lower energy consumption for the same payload, but has a reduced transmission
range. However, the use of orthogonality is limited by hardware capabilities and, therefore,
should be a factor accounted for when designing scalable real-time LoRa (details in Section 3).

Collisions. A LoRa collision occurs when two or more nodes transmit concurrently in the
same channel with the same SF [31–33]. Therefore, whenever a LoRa packet is transmitted
asynchronously (without an agreed upon schedule), using CSMA prior to transmission is
desirable to minimize collisions. However, LoRa modulation is unique in that LoRa packets
can be demodulated beneath the noise floor [8, 34,35] and allows concurrent transmissions
within a single channel. Due to this unique nature, a CSMA mechanism that doesn’t cripple
the said features is required [36–38]. CSMA designs from other wireless technologies, e.g.,
WiFi [39,40], utilize the received signal strength measurements to verify the presence of on-
going transmissions. However, LoRa networks will yield inefficiency from such signal strength
based protection as it cripples LoRa’s orthogonality and misses below noise packets [12]. To
this end, we adopt LMAC [13], which exploits the low-power Channel Activity Detection
(CAD) mode available within all LoRa radios to avoid collisions. Every CAD operation is
SF-selective, i.e., it can detect transmissions in a specified SF while remaining insensitive to
other simultaneous transmissions in different SFs within the same channel. Thus, adopting
LMAC allows preserving LoRa’s multiple access capability.

3 Motivation

Understanding the limitations of a wireless technology is key to designing an efficient
network utilizing the same. In this regard, we identify two key limitations that hinder
LoRa’s effectiveness in large-scale real-time deployments. 1) Uplink-downlink asymmetry:
a COTS LoRa gateway operates in half-duplex mode, meaning it cannot receive uplink
transmissions while busy with a downlink transmission. 2) Limits on concurrency: a COTS
LoRa gateway can only demodulate up to 8 simultaneous uplinks [41]. This section introduces
the architectural constraints of COTS LoRa gateways and provides experimental evidence to
illustrate their impact1.

Uplink-Downlink Asymmetry. LoRa uplink transmissions can fail for several reasons
including external channel interference. To address this, LoRa nodes can rely on downlink
messages from gateways to determine if a retransmission is necessary upon a failed

1 The design of the testbed used for the experiments in this section is discussed in detail in Section 7.
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Figure 1 Architecture and Concurrency Limits of a COTS LoRa Gateway

transmission. Downlinks are thus essential for designing real-time systems that require
high reliability. A LoRa gateway integrates functionality to cater to uplinks and downlinks,
however, not both simultaneously since COTS LoRa gateways operate in half-duplex mode.
Thus, a LoRa gateway loses all incoming uplinks while it is busy with a downlink transmission.
We have studied the Semtech documentation on the standard LoRa gateway as well as its
reference design and present the architecture of a COTS LoRa gateway in Figure 1a [41, 42].
The fundamental reason for this uplink-downlink asymmetry is that the antenna path of the
LoRa gateway physically shifts between receive and transmit paths, causing the gateway to
miss all uplink data during downlink transmission. More specifically, the Radio Frequency
(RF) switch, present in LoRa gateways, temporarily disconnects the incoming RF data from
the demodulators during transmission – a hardware constraint that cannot be bypassed with
software solutions. Although some preliminary works have aimed to address this issue by
introducing full-duplex capabilities to LoRa gateways [43, 44], those require modifications to
COTS hardware and reduces the multiple access capability of LoRa.

Recent research, such as Busy Signal Multiple Access (BSMA) [43], has shown that it is
possible to build a custom full-duplex LoRa gateway capable of transmitting a busy signal
while receiving uplink packets. Their prototype achieved true full-duplex operation but
revealed significant barriers to commercial adoption. To function correctly, BSMA’s gateway
needs to suppress its own transmitted signal by over 100 dB, matching LoRa’s extreme
receiver sensitivity threshold of nearly −120 dBm. Achieving this level of cancellation requires
complex analog circuitry, including specially tuned vector modulators, custom approximations
for short-delay multi-path effects, and substantial physical antenna isolation. Even with these
modifications, careful manual adjustment of antenna placement is necessary to minimize
interference. These technical demands impose high costs, increased design complexity, and
larger physical footprints. As a result, deploying full-duplex gateways at scale remains
commercially nonviable at the moment.

We conducted an experiment using our testbed and observed considerable loss in the
Packet Reception Ratio (PRR) due to the uplink-downlink asymmetry, as illustrated in the
top plot in Figure 1b. In this experiment, 16 nodes periodically communicate with a COTS
LoRa gateway, and we observe the PRR for varying periods. Note that these periods also
denote transmission deadlines for the nodes. Upon transmission, each node requests an ACK,
which requires the gateway to switch into transmit mode. As shorter periods imply more
ACKs, the gateway is forced to spend longer duration in transmission mode, being deaf to
incoming packets. As a result, the shorter the node period, the higher the ratio of lost packets.

Limits on Concurrency. Although the communication bandwidth of a LoRa channel
consumes only 125KHz, a single LoRa channel is designed to be 200kHz to accommodate
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guardbands to minimize interference [45]. A gateway therefore continuously processes 1.6MHz
of baseband covering 8 LoRa channels. As illustrated in Figure 1a, the two SX1257 front-end
transceivers collectively digitize 1.6MHz of ISM spectrum and pass this data to the SX1301
digital baseband chip for further processing. The SX1301 detects, demodulates, and decodes
this data, and finally transfers packets to the host system.

A single LoRa channel can accommodate simultaneous packets with different SFs.
Therefore, the All SF Packet Detector continuously scans all 8 channels (IF0 to IF7) for
potential preambles belonging to all SFs, whereas channels IF8 and IF9 are reserved for
gateway-gateway communication and frequency shift-keying modulation, respectively. Once
a preamble is detected, the Packet Arbiter assigns its demodulation to one of the available 8
demodulators. In this manner, the SX1301 baseband chip architecture separates the preamble
detection process from demodulation, also shown in Figure 1a. Therefore, the gateway can
simultaneously detect packets from any of the 48 possible SF/channel combinations. However,
it can only demodulate up to 8 packets simultaneously due to the 8 demodulators [41]. Note,
the additional single-channel single-SF demodulator highlighted in Figure 1a is pre-configured
at boot time and designed only to be utilized as a backhaul link between gateways.

The bottom plot in Figure 1b illustrates the observations from experiments which validates
the said limitation. As the number of concurrent packets transmitted towards the gateway
reach 8, further increments lead to a sharp decrease in PRR, translating to missed deadlines.
The anticipated line represents the theoretical PRR, assuming the gateway is limited to
receiving only 8 concurrent packets at a time. Note, although Figure 1b shows occasions
where more than 8 packets could sometimes be demodulated due to buffering, the gateway
should not be operated under such concurrency. This is because packet loss in a wireless
network is mainly due to the unreliable nature of the wireless channel. Operating beyond
the rated capabilities of the SX1301 chip further amplifies this packet loss.

4 System Model

We consider a LoRa-based LPWAN system with a set of n nodes and a single gateway. While
multi-gateway setups are possible in LoRa, we focus on a single gateway setup in this work; a
single LoRa gateway can support up to 10000 nodes over a coverage range of up to 6km [8,9].

Each node transmits a periodic real-time message to the gateway. Let m1, . . . , mn

represent the n periodic messages from the nodes, where each message mi has a period
pi, also its deadline. Without loss of generality, we assume the periods are sorted, that is
pi ≤ pi+1 for each i. We also assume that each pi is an integer multiple of p1, a typical
assumption for industrial and IoT applications that often rely on harmonic periods [20]. Note,
this is a weaker condition than strict harmonicity, and it enables us to define a fixed-length
super-frame of duration p1 such that all message deadlines are aligned with super-frame
boundaries. The hyper-period is defined as h = lcm{p1, . . . , pn}. Let mi,j denote the jth

instance of mi, which is generated at time instant (j−1)×pi and must complete transmission
by time instant j × pi.

Let set S = {SF7, . . . , SF12} denote the SFs available in LoRa. The smallest feasible SF,
sfi, for message mi is determined by the node-gateway distance and we assume this is given.
The airtime of a data packet, which includes header as well as cyclic redundancy check, is
determined by message size, SF and modulation parameters, and it can be obtained using
Eq.7 in [8].

A message can be transmitted in any one of the 8 channels C = {ch1, . . . , ch8}. The
transmissions across different channels do not interfere even if transmitted with the same SF.

ECRTS 2025
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Furthermore, different SFs can be used by nodes transmitting in the same channel without
interference. Thus, in theory, up to 6× 8 messages can be transmitted concurrently without
collisions. However, as explained in Section 3, a COTS LoRa gateway can only demodulate
up to 8 messages concurrently, and hence we use this practical limit in our setting.

In a hyper-frame having duration equal to hyper-period, messages are scheduled in p1-
duration super-frames using TDMA. The structure of this super-frame is discussed in detail
in Section 5. Let these super-frames be labeled as {F0, F1, . . . , Fh/p1−1}. Up to 8 concurrent
transmissions can occur at each time instant in any super-frame, due to the aforementioned
practical limit. It is then reasonable to schedule those 8 concurrent transmissions on 8 different
channels to minimize inter-packet noise. Further, to minimize transmission time and energy,
each instance of message mi is always transmitted using the smallest feasible SF. Although
it is possible to schedule transmissions using higher SFs, we show in Section 6 that there
is no loss in schedulability by considering only the smallest feasible SFs. Consequently, the
required slot length for message mi, denoted Li, which includes both the airtime (calculated
with the smallest feasible SF) and any additional network overhead, can be determined.

The slot for a message instance mi,j must be reserved in one of the 8 channels during the
activation window ((j − 1)pi, jpi]. We assume that each message instance must complete
transmission within the same super-frame. Let STi,j be the start time of transmission for
mi,j ; STi,j is time relative to the start of the hyper-frame. Then, this transmission will finish
at FTi,j = STi,j + Li when the message is received at the gateway, and we require that time
instants STi,j and FTi,j belong to the same super-frame.

Thus, given a LoRa physical layer based real-time system described above, the problems
addressed by the proposed LoRaHART protocol are:
P1. Design a super-frame structure with provisions for deterministic transmissions using
TDMA, acknowledgments from the gateway for TDMA transmissions, and opportunistic
retransmissions for failures using CSMA.
P2. Model the contention dynamics of the CSMA-based retransmission phase to compute
the probability of successful transmissions under ideal channel conditions.
P3. Design a channel and super-frame scheduling algorithm for meeting deadlines of messages
m1, . . . , mn using TDMA-based transmissions under ideal channel conditions.

Due to possible external interferences to the wireless medium (non-ideal channel
conditions), retransmissions may be required for failed TDMA-based uplinks. An efficient
acknowledgment mechanism is then crucial so nodes can detect transmission failures. Since
transmission status is unknown at design time, deterministic retransmission slots would
waste network resources. Therefore, we propose a super-frame structure that supports
multicast acknowledgments and provides opportunistic CSMA-based retransmission capability.
However, since these retransmissions may have collisions with each other, we also derive a
model to analyze such transmission collisions and obtain a probabilistic estimate of successful
retransmissions. Eventually, to evaluate the practical performance of LoRaHART (under non-
ideal channel conditions), we conduct extensive testbed experiments discussed in Section 7.2.

For TDMA scheduling of channels and super-frames, we determine the following three
parameters for each message instance mi,j in the hyper-period: a super-frame Fi,j ∈ {Fx|x ∈
{(j − 1)pi/p1, . . . , jpi/p1 − 1}} and channel Ci,j to which the instance is mapped, and a
start time STi,j for transmission of the data packet satisfying the condition FTi,j ≤ jpi.
Additionally, STi,j and FTi,j must belong to the same super-frame, and for collision free
transmissions one must also ensure that there is no overlap in the slots allocated to message
instances that are scheduled in the same channel.
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Figure 2 LoRaHART Super-frame Structure

5 Super-Frame Structure

In this section, we address Problem P1 and present a hardware-aware super-frame structure for
enabling real-time transmissions in LoRa-based networks. The proposed structure supports
real-time uplink messages via TDMA, acknowledgments and opportunistic retransmissions for
failed transmissions via CSMA, all while accounting for the hardware limitations described
in Section 3 – uplink-downlink asymmetry and concurrency constraints.

Transmissions occur in repeated super-frames, each with a duration of p1. A hyper-period
h consists of h/p1 super-frames, collectively called a hyper-frame. Each super-frame is divided
into four segments, as illustrated in Figure 2: Beacon (Bec) of duration TBec, TDMA of
duration TT DMA, Acknowledgment (ACK) of duration TACK and Retransmission (RTx) of
duration TRT x. The super-frame begins with a Beacon segment Bec, which upon reception
enables the nodes to synchronize their time and start their uplinks to the gateway.

The second segment, TDMA, operates using a Time Division Multiple Access protocol
where each message instance is assigned a slot for transmission. Furthermore, by leveraging
channel orthogonality, up to 8 uplinks can be transmitted concurrently at each time instant in
this segment. The spreading factor (SF) determines the slot length for each transmission, and
slots are assigned within the activation window ((j− 1)pi, jpi] for each message instance mi,j .
Importantly, transmissions must be completed within the same super-frame, as preemption is
not allowed. The scheduling algorithm for determining the slot parameters ⟨Fi,j , Ci,j , STi,j⟩
for each message instance mi,j in this segment is discussed in Section 6.

Following the TDMA segment is the acknowledgment, ACK, segment. It is crucial that
acknowledgment messages are sent in time to allow retransmissions when needed. A unicast
ACK, which is asynchronous with uplinks from other nodes, would require the gateway to
frequently switch between receive and transmit modes, causing uplink losses. To address
this, we implement multicast acknowledgment [21], where the gateway sends a collective
acknowledgment for all successfully received transmissions in each super-frame. This can be
implemented by multicasting a bit vector, where the ith bit indicates the success (bit-1) or
failure (bit-0) of a transmission as shown in Figure 3. The multicast ACK is transmitted under
the highest SF (SF12) on a predetermined channel. Although the number of bits in the bit
vector depends on the number of nodes, this approach remains scalable for practical network
sizes, e.g., a 3 second TACK window is sufficient to accommodate the airtime required for
multicasting a bit vector comprising 600 nodes. Furthermore, our ACK method significantly
reduces the gateway’s transmission time, allowing it to spend more time listening rather
than transmitting. This increased listening time reduces uplink losses as the gateway is no
longer occupied with per-uplink ACK transmission. To the best of our knowledge, we are
the first to incorporate and evaluate this aggregated ACK on a large-scale LoRa testbed.

In the case of a failed transmission from a node, the node gets an opportunity to
retransmit in the same super-frame; more specifically, following the ACK segment, a segment
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Figure 3 Multicast Acknowledgment

referred to as the RTx segment is reserved for retransmissions. Unlike the TDMA segment, a
retransmission slot is not reserved a priori, but instead the nodes with failed transmissions
attempt to retransmit by following LMAC (an efficient CSMA-based protocol for LoRa) [12].
To improve the chance of a successful retransmission, we propose to retransmit a message
instance with a SF that is one level higher than its smallest feasible SF (or SF12 if it is
already the smallest feasible SF). Note that this approach allows for a greater number of
potential retransmissions in the RTx segment compared to retransmitting with SF12 for each
failed node, since the slot durations are shorter. The number of concurrent transmissions
within the RTx segment are not limited to 8 but managed by LMAC.

Together, these four segments form a super-frame. Recall our assumption that pi = y×p1
(where y is a positive integer) for each message mi. This ensures that all message deadlines
align with super-frame boundaries. Moreover, synchronizing downlinks allows us to avoid the
issue of uplink-downlink asymmetry. Considering the COTS LoRa gateway demodulation
capability, the proposed super-frame limits the maximum number of concurrent transmissions
at any time instant to 8 (as discussed in Section 3).

LoRaHART employs a flexible super-frame structure that can be adapted to different
deployment scenarios and can be scaled efficiently with network size. In its current
configuration the 5-second retransmission (RTx) window proves to be sufficiently large where
very few number of nodes (4–52) typically use it in a single super-frame, leaving most of
the window idle. Furthermore, reducing packet sizes below 26 bytes allows shorter TDMA
slots and increases the number of packets within each super-frame. Smaller packet sizes
and improved synchronization accuracy at the sub-second level will enable further slot size
reductions, minimizing airtime wasted on buffer intervals. Parameters such as TACK , TRT x,
and slot durations are therefore intentionally designed to be configurable. They should be
tuned carefully based on network requirements, informed by experimental evaluation in the
intended deployment environment.

Comparison of Super-frame Structures between RT-LoRa and LoRaHART: As shown
in Figure 4, RT-LoRa organizes its super-frame into five sections: (i) a Beacon window
transmitting across all Spreading Factors (SFs) for synchronization and mobility, enabling
dynamic SF selection, allowing mobile nodes to choose the optimal SF from the successfully
received beacons. In contrast, LoRaHART assumes precomputed minimum feasible SF
assignments suited for energy-constrained static networks; (ii) a Contention Access Period
(CAP) supporting unscheduled aperiodic uplinks via slotted ALOHA; (iii) a Contention-Free
Period (CFP) for periodic real-time transmissions using multi-channel, multi-SF TDMA
scheduling; (iv) an optional Downlink window for gateway-to-node communications; and
(v) a CFP Acknowledgment window for global feedback corresponding to CFP uplinks,
identical to the multicast acknowledgment window in LoRaHART. One major distinction is
that, unlike LoRaHART, RT-LoRa does not utilize this feedback mechanism for retransmissions
of undelivered periodic real-time messages. Later in Sections 7.2 and 7.4, we experimentally
show the robustness benefits of the RTx window in LoRaHART.

2 Details are presented in experimental validation of LMAC under Section 7.6
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Figure 4 Super-frame structure of RT-LoRa [21]

5.1 Probability Model for Transmission Collisions in LMAC
In this section, we address Problem P2 by presenting a probabilistic model for node
contention in the retransmission (RTx) window. The nodes adhere to LMAC [12] in this
window and we assume ideal channel conditions, meaning that if only one node transmits
within a given time window the transmission is considered successful from the sender’s
perspective. We focus on the contention process of a single channel and SF, where k out of
n nodes — having a 0-bit in their acknowledgment vector in the ACK window — compete
for access to their respective ch/sf . Since channels and SFs other than the selected ones
remain orthogonal, they do not contribute to contention. However, a successful transmission
from the sender does not guarantee reception at the gateway. As shown in Figure 1b,
even when concurrent transmissions are limited to 8, the gateway does not achieve 100%
PRR, highlighting inherent reception limitations. Practical constraints — such as external
interferences and decoding inefficiencies — prevent perfect demodulation. Modeling such
reception dynamics would require a more comprehensive model, which is beyond the scope
of this work.

Overview of LMAC. LMAC is inspired by the 802.11 Distributed Coordination Function
(DCF) [46]. When a node initiates a transmission on its assigned Channel/SF (ch/sf), it
first waits for a Distributed Inter-Frame Space (DIFS) duration, during which it performs
12 Channel Activity Detection (CAD) operations. If all CADs report an idle channel,
the node randomly selects a backoff value NBO ∈ {0, 1, . . . , b − 1} and periodically senses
the channel and decrements this counter if the channel is idle. Here b is an integer
value which can be chosen empirically based on the number of nodes. In the event that
the channel is sensed to be busy during this countdown, the node freezes its backoff
counter, reverts to DIFS mode where it performs CAD, and resumes the countdown
only when the channel is idle again. Moreover, nodes do not receive acknowledgments
for data packets transmitted during this LMAC window; thus, each node may only get
a single chance to transmit its message within RTx. For more details on LMAC, please see [45].

Modeling Assumptions. We derive a closed-form expression for the probability of a
successful transmission (Psuccess) under the assumption that the maximum backoff value b

for a ch/sf is limited by the ratio TRT x/Ttx, where Ttx represents the airtime of a message.
This is a reasonable assumption because it ensures that in the worst-case, where backoff
countdown freezes for a duration of Ttx at each value, when the countdown completes there
is still sufficient remaining time for the node to attempt a transmission in RTx. Furthermore,
since any node transmitting after the current transmission must wait for a DIFS interval
before sending a packet, we merge this DIFS duration into Ttx for simplicity.

Probability of Successful Transmission. Suppose NBO = s ≤ b− 1 for some node. Note,
s < TRT x/Ttx by the above assumption and a node transmits only when the backoff counter
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reaches 0. Since backoff values are chosen uniformly at random from the range {0, . . . , b− 1},
the probability of selecting any particular value s is: Ptx = 1/b. A transmission is considered
successful if no other node selects the same backoff value s. The probability that none
of the remaining (k−1) nodes select the same value s can be given as: Psuccess = (1− 1/b)k−1.

Expected Number of Successful Nodes. Since each of the k nodes is successful with
probability Psuccess (independently), the expected number of total successful transmissions
for a ch/sf combination having k contending nodes in the retransmission window can be
obtained via linearity of expectation as: E[# successes] =

∑
k Psuccess = k · Psuccess.

6 Super-Frame and Channel Scheduling

In this section, we address the scheduling problem P3, which involves determining the
super-frame Fi,j , channel Ci,j , and slot start time STi,j for each message instance mi,j within
the hyper-period h. Once a super-frame from the set {Fx|x ∈ {(j− 1)pi/p1, . . . , jpi/p1− 1}}
is selected, we ensure that the timing constraint FTi,j ≤ (x + 1)p1 − (TRT x + TACK) is met,
i.e., the transmission must finish within the TDMA segment of the selected super-frame.
A set of message instances is considered feasible for transmission in a super-frame if each
instance can be scheduled on one of the 8 channels, with non-overlapping slot allocations in
each channel and with each transmission completing within the TDMA segment.

We solve problem P3 by addressing the following three sub-problems: SP1) Determine
(mi,j 7→ Fi,j) a packing of each instance mi,j to one of the pi/p1 super-frames within
((j−1)pi, jpi] such that all the instances packed to a super-frame are feasible. SP2) Determine
(mi,j 7→ Ci,j) a packing of instances to channels within each super-frame. SP3) Compute
(mi,j 7→ STi,j) a schedule of instances in each channel of each super-frame such that the
transmission finishes within the TDMA segment and the slot allocations are non-overlapping.

To address these sub-problems, we propose: (i) Message Instance to Super-Frame Packing
(MFP) Algorithm to solve SP1, and (ii) Message Instance to Channel Packing (MCP) Algorithm
for SP2 and SP3, which returns false if a set of message instances mapped to a super-frame are
infeasible and schedules the instances in channels otherwise. The MFP algorithm prioritizes
message instances based on the rate monotonic strategy. MCP is used to check the feasibility
of packing a message instance into a super-frame. If the packing is found to be feasible, the
message is packed and scheduled in a channel in the corresponding super-frame.

6.1 Message Instance to Channel Packing (MCP) Algorithm

In this section, we propose MCP, an algorithm to pack and schedule message instances that are
mapped to a specific super-frame in 8 channels. For each instance mi,j in the super-frame,
the objective is to determine Ci,j , the channel to which it is packed, and STi,j , its allocated
slot start time. MCP has to ensure that the slot finish time FTi,j = STi,j + Li is within the
TDMA segment of the super-frame and that slot allocations in a channel are non-overlapping.

The MCP algorithm adopts the Sum Partial Solutions (SPS) algorithm from [47], which
addresses the problem of mapping non-preemptive jobs to identical machines to minimize
makespan. SPS algorithm works in two phases: firstly, using the Determining Partial Solutions
(DPS) algorithm, a tuple of partial packings are obtained, which are then iteratively merged
in the second phase to compute a final packing of the jobs to machines. We modify SPS
to fit the context of channel packing and scheduling in LoRa networks, where channels are
analogous to machines and message instances to the non-preemptive jobs. Furthermore, SPS
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Algorithm 1 MCP(I) Algorithm

/* Phase 1 */

1 Rearrange indices in I such that Li ≥ Li+1 for all i

2 Initialize y ← 1 and Np ← 1
3 Set Py = ⟨Py,1 = {m1}, Py,2 = ∅, . . . , Py,8 = ∅⟩ and add Py to P
4 Set ∆y = ⟨∆y,1 = L1, ∆y,2 = 0, . . . , ∆y,8 = 0⟩ and δy = L1
5 for i = 2 to |I| do
6 if Li ≤ δ1 then
7 Add mi to P1,8
8 Update ∆1,8 ← ∆1,8 + Li

9 Rearrange indices in P1 in decreasing order of ∆1,l and update δ1

10 else
11 Np ← Np + 1; y ← Np

12 Set Py = ⟨mi,∅, . . . ,∅⟩ and add Py to P
13 Set ∆y = ⟨Li, 0, . . . , 0⟩ and δy = Li

14 Rearrange indices in P in decreasing order of δy

/* Phase 2 */

15 while |P| > 1 do
/* Merge P1 and P2 */

16 for l = 1 to 8 do
17 P1,l ← P1,l ∪ P2,8−l+1

18 Rearrange indices in P1 in decreasing order of ∆1,l

19 Update ∆1 and δ1
20 Discard P2 from P
21 Rearrange indices in P in decreasing order of δy

22 for l = 1 to 8 do
23 if ∆1,l > TT DMA then
24 return False

25 return P1

attempts to minimize the makespan, whereas any makespan smaller than the duration of the
TDMA segment of the super-frame is acceptable for MCP.

Given a tuple of message instances I, MCP either returns a feasible packing and schedule
for the 8 channels or reports failure. It works in two phases. In the first phase, a tuple of
partial packings are computed such that each partial packing (i) consists of 8 sub-groups
where each sub-group, if non-empty, consists of a subset of I that has been packed to the
corresponding channel, and (ii) is exclusive, i.e., a message instance is included in exactly
one sub-group of a partial packing. Subsequently, partial packings are merged iteratively
until only one packing remains in the second phase.

In phase 1 of MCP (shown in Algorithm 1), the tuple of message instances I is first
arranged in decreasing order of slot length Li (Line 1). The algorithm computes a tuple P of
partial packings, where each partial packing Py represents a subset of message instances from
I. Each partial packing consists of 8 sub-groups Py,l (l ∈ {1, . . . , 8}), with each sub-group
assigned to a specific channel. The total slot length of all instances in the lth sub-group is
denoted as ∆y,l. The gap of a partial packing, δy, is defined as the difference between the
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Algorithm 2 MFP Algorithm

1 Rearrange indices in M such that pi ≤ pi+1 for all i /* RM priority */

2 foreach mi ∈M do
3 for j = 1 to h

pi
do

4 Initialize set of candidate super-frames cand←
{

F(j−1)pi/p1 , . . . , F(jpi/p1)−1

}
5 status← False
6 foreach Fx ∈ cand considered in ascending order of x do
7 I ← set of message instances already packed in Fx

8 if MCP(I ∪mi,j) is True then
9 status← True; Break

10 if status = False then
11 Report Failure

maximum and minimum sub-group total slot lengths: δy = maxl{∆y,l} −minl{∆y,l}. MCP
begins with an initial partial packing where the message instance with the largest slot length
is placed in the first sub-group (lines 2 - 4). Since at most one instance of any message will
be mapped to a single super-frame, we drop the subscript j in mi,j in this subsection. As
subsequent message instances are packed, they are either added to the partial packing with
the largest gap (lines 5 - 9) or a new partial packing is created (lines 10 - 13). The sub-groups
within each partial packing are always kept in decreasing order of total slot lengths (Line 9),
and the tuple of partial packings is maintained in decreasing order of gap size (Line 14). Let,
Np = |P| be the number of partial packings in P at the end of phase 1. Phase 1 concludes
once all the message instances have been packed into a partial packing, with

⋃
Py,l = I.

In phase 2 of MCP, two partial packings with the highest and second highest gaps are
merged. The first sub-group of the first partial packing is merged with the last sub-group of
the second partial packing, and so on (lines 16 - 17). Subsequently, the sub-groups in the
updated partial packing P1 are sorted (Line 18) followed by updation of ∆1 and δ1. Finally,
the indices in P are rearranged in decreasing order of gap δy. This procedure is repeated
until P contains no more than one partial packing. The merged partial packing P1 (for which⋃

P1,l = I) is evaluated to ensure that the schedule completes within the TDMA segment of
the super-frame (lines 22 - 24).

Let P ∗ be an optimal packing of message instances I produced by an oracle corresponding
to P1 obtained in Line 25 of Algorithm 1. We define ∆∗ to denote the makespan of the
optimal solution, whereas ∆mcp = maxl∈{1,...,8}{∆1,l} denotes the makespan of MCP. Then
the approximation ratio for MCP algorithm is (this follows from the approximation ratio of
SPS algorithm presented in Theorem 4.1 [47])

∆mcp

∆∗ ≤ 1 + c− 1
c ·Np

if Np > 1 (1a)

∆mcp = ∆∗ if Np = 1 (1b)

where c is the number of channels (in this case 8), and Np is the number of partial packings.
The initial sorting of indices in descending order of their slot length for I takes O(n log n)

time, where n denotes the maximum number of message instances that can be packed in
a super-frame. Excluding the operation on line 18 which takes O(c log c) time, note that,
rearranging the indices in P1 and P can be accomplished in logarithmic time, because only
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one of the updated indices needs repositioning. Hence the creation of partial packings (loop
in Line 5) takes O(n log n) time and the merging of those partial packings into one final
packing (loop in Line 15) takes O(n log c) time [47], where c is number of channels. The
overall computational complexity of MCP algorithm is O(n log n).

6.2 Message Instance to Super-Frame Packing (MFP) Algorithm
The MFP algorithm addresses sub-problem SP1 of packing message instances to super-frames
and obtains a packing in each super-frame using MCP. It is detailed in Algorithm 2.

Messages are packed into super-frames in priority order as determined by the rate
monotonic algorithm (Line 1). Messages with shorter periods have higher priority, with ties
broken arbitrarily. For each message instance mi,j , the algorithm evaluates a set of candidate
super-frames within its activation window (earliest super-frame first), and checks if adding
the instance is feasible using the MCP algorithm (Line 8). If no feasible packing is found,
the algorithm reports failure (Line 11). Once all the message instances are packed into
super-frames, the schedule for each channel and super-frame can be easily computed from
the output of MCP. Recall that message deadlines are aligned with super-frame boundaries
and only super-frames within the activation window of a message instance are considered
for packing. Therefore, the exact ordering of messages within a channel in a super-frame
does not affect the deadline guarantees. That is, given the tuple P1 returned by MCP, each
sub-group P1,l (l ∈ {1, . . . , 8}) can be mapped to the corresponding channel l, and the
message instances within P1,l can be scheduled in any arbitrary order.

Complexity Analysis: Messages are sorted based on periods following the rate monotonic
strategy (Line 1), which takes O(n log n) time for n messages. For each of the h/pi instances
of message mi, the algorithm evaluates up to pi/p1 candidate super-frames. This results in a
total of O (n · h/p1) invocations of MCP. Each invocation of MCP has a complexity of O(n log n),
where n is the maximum number of message instances in any super-frame. Therefore, the
overall complexity for MFP is: O

(
h/p1 · n2 log n

)
. Note, if periods are harmonic and the

ratio of largest to smallest period can be regarded as a constant (a common setting in many
real-world industrial and IoT applications [48]), this complexity becomes quadratic.

Differences in scheduling between RT-LoRa and LoRaHART: The scheduling strategy of
RT-LoRa differs fundamentally from that of LoRaHART. In RT-LoRa, all periodic application
layer transmissions are assumed to have the same generation period which is a very strong
assumption that greatly simplifies the scheduling problem unlike the transmission model
considered in this paper. Thus, each periodic real-time transmission in RT-LoRa is required
to be scheduled in every super-frame, eliminating the need for a message instance to super-
frame packing algorithm. Further, under RT-LoRa, nodes select an appropriate SF for
their transmissions based on reception quality of the gateway beacon as well as their QoS
requirements. Specifically, RT-LoRa uses SF-based grouping, where each spreading factor
is mapped to a subset of available channels, and messages within the same SF group are
allocated to different channels. Scheduling within a super-frame is then performed by
assigning one slot per transmission with the slot length based on SF-based airtime. In
contrast, LoRaHART uses a two-stage scheduling mechanism that performs both super-frame
mapping and intra-frame channel packing using a packing algorithm, which provides greater
flexibility for heterogeneous periods and more efficient channel utilization. Nevertheless,
RT-LoRa assumes the application layer operates asynchronously with the MAC layer. As
a result, a message may miss its assigned slot within the current super-frame and must
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Figure 5 Runtime Complexity of Scheduling Algorithm MFP.

wait until the next super-frame for transmission. They provide a closed-form expression to
compute this worst-case delay, and consider the generated schedule to be feasible if this delay
is no more than the deadline for all the transmissions; otherwise, the transmission SF must
be adjusted to generate a new schedule. Note, since the transmission model used in RT-LoRa
is very simple (all period values are the same), their proposed scheduling approach cannot
be applied for the model considered in this paper and hence we did not evaluate RT-LoRa in
our experiments.

6.3 Scalability and SF Orthogonality of LoRaHART
To demonstrate the scalability of LoRaHART, we present runtime complexity measurements
of the MFP scheduling algorithm for network sizes ranging from 40 to 500 nodes3. These
experiments were conducted on a Linux device equipped with a 12-core Intel Xeon CPU and
32 GB RAM. Figure 5 illustrates how the runtime complexity of the algorithm (in seconds)
scales as the network size increases. We observe that for relatively small networks (e.g., 40
nodes), the algorithm computes schedules efficiently, requiring only about 30 ms. For larger
networks, computation time increases, reaching approximately 1.8 seconds for 500 nodes.
Notably, even at this scale, the computation time remains practical and does not become a
bottleneck, highlighting LoRaHART’s suitability for large-scale IoT deployments.

Recall from Section 4 that each message mi is scheduled using its smallest feasible SF
sfi. In the following lemma, we show that this assumption does not impact schedulability.

▶ Lemma 1. Under LoRaHART, if it is feasible to schedule a set of n messages, then there
exists a feasible schedule in which each instance mi,j uses its smallest feasible SF sfi.

Proof. Consider any feasible schedule such that there is at least one message instance mi,j

which is scheduled using a SF higher than its smallest feasible SF sfi. Note the slot length
used by mi,j is equal to or higher than Li, because the slot length required to transmit the
message using a higher SF is at least as much as the one required for sfi. Then, we can swap
the slot for mi,j with a slot of length Li so that the message instance can use its smallest
feasible SF for transmission. The resulting schedule is also a feasible schedule, because in
LoRaHART no concurrent transmission will be allocated to the same channel as mi,j . ◀

LoRaHART currently maps eight concurrent transmissions directly onto the eight available
channels. Even if it does not fully exploit the orthogonality of LoRa’s spreading factors, it
still aligns with the current hardware capabilities, by delivering a practical, hardware-aware
solution for today’s deployments. If the hardware evolves and gateways begin to support
more parallel demodulators, new opportunities will emerge. In particular, future versions
of LoRaHART could leverage SF orthogonality to allow multiple transmissions on the same
channel, provided they use different SFs. For instance, if a gateway supports 16 parallel

3 The workload generation process for these experiments is described in detail in Section 7.2.
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demodulators, the MFP algorithm could be extended to schedule two sets of transmissions
per super-frame, ensuring that two overlapping transmissions on the same channel do not
share the same SF. To incorporate this into the existing design, minor modifications would
be required in the MCP algorithm. Specifically, during the packing phase (lines 5–14), when
adding a message instance mi to a channel l, an additional check should be introduced
to verify that no other message in that channel uses the same SF within the slot under
consideration. This can be enforced by augmenting each channel group P1,l with the set of
SFs currently assigned in that slot and rejecting the addition of any new message with a
duplicate SF. Similar care must be taken during the merging phase (lines 16–19), where the
SF uniqueness constraint must be respected to avoid interference. This adaptation would
improve channel utilization while preserving real-time guarantees, making it a promising
direction for scaling LoRaHART alongside advancements in the LoRa gateway technology.

LoRaHART adaptation for dynamic networks: LoRaHART uses an offline scheduling
approach, where the computed schedule is uploaded to the nodes prior to deployment.
However, in real-world settings, dynamic changes such as node joins, departures or variations
in required SFs (due to mobility or environmental factors) may necessitate schedule updates.
Typically, nodes report such changes to the network server via metadata embedded in control
messages or periodic link-quality monitoring. Once the network server detects a topology
change, it can initiate re-scheduling. To avoid recomputing the entire schedule from scratch,
we can use an incremental scheduling approach in LoRaHART. The existing transmission-
to-super-frame mapping can be reused for all nodes whose transmission parameters (e.g.,
SF) remain unchanged. The scheduling algorithm can then be re-invoked with this partial
mapping as the starting point. New or modified nodes can be scheduled using LoRaHART and
if all new mappings are feasible, the updated schedule can be produced without impacting
the rest of the network. To support this incremental scheduling, the MCP algorithm must
also be adapted to ensure that existing message-to-channel assignments are preserved during
re-packing. Specifically, when invoking MCP during incremental scheduling, the already
scheduled messages (whose SFs or deadlines remain unchanged) should be treated as fixed
assignments within their original super-frame and channel. The candidate message instances
(from newly joined or modified nodes) are then packed into the remaining available channels
and slots without altering the current placements. Thus, by anchoring pre-existing allocations
and only attempting to fit the new/modified messages around them, the updated MCP ensures
incremental packing is feasible and efficient, provided sufficient residual capacity is available.

7 Experimental Evaluation

In this section we discuss the results of extensive indoor and outdoor experiments which
evaluate the performance of LoRaHART and compare it to two baselines (RTLS [15] and
RTPL [16]) on our 40-node LoRa testbed. It is divided into five subsections: 1) Section 7.1,
details testbed configuration and experiment workflow; 2) Section 7.2 evaluates the system’s
performance across different demand levels and under the three real-time scheduling
algorithms with their respective super-frame structures; 3) Section 7.3 compares the schedulab-
ility and resource efficiency of the three algorithms by using them over the super-frame
structure from Section 5; 4) Section 7.4 evaluates the robustness of LoRaHART in the
presence of increasing interference; 5) Section 7.5 analyses energy consumption of LoRaHART;
6) Section 7.6 validates our LMAC probability model by comparing theoretical expectation
with experimental data.
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7.1 Design of Testbed and Experimental Workflow
LoRa testbed. We constructed a 40-node LoRa testbed to evaluate the performance of
real-time scheduling algorithms on COTS LoRa hardware. Four design goals guided this
setup: first, the testbed needed to support sparse deployments across a large university
laboratory; second, a central controller was required to manage the firmware of all the nodes;
third, each node needed a backhaul link for centralized metadata collection; and finally,
synchronization across all 40 nodes was essential to enable real-time scheduling.

Backhaul links in testbeds are essential for loading firmware onto nodes and collecting
ground-truth data, such as the packet count from each node, needed for performance
calculations. However, LoRa’s narrowband modulation limits its capacity to transfer such
data. Physically connecting all 40 nodes to a single controller would simplify firmware loading
and data extraction, but this would compromise the distributed nature of the testbed. Instead,
we deploy ten distributed controllers, each managing four LoRa nodes, along with a central
controller that collates data. These controllers, implemented as single-board computers,
communicate over WiFi. The distributed controllers load firmware and relay experimental
information as needed between the LoRa nodes and the central controller.

The testbed uses Heltec Stick Lite V3 [49] LoRa nodes with integrated SX1262 LoRa
radios. Communication between the LoRa nodes and distributed controllers (e.g., for
firmware uploads and backhaul data transfers) is facilitated via an emulated USB-serial
interface. Fig. 6a illustrates the connectivity between each component of the testbed,
Fig. 6b shows an image of the testbed hardware and Fig. 6c shows the outdoor gateway.
To address the requirement of supporting geographically distributed nodes, distributed
controllers communicate through a network tunnel [50] with the central controller. As the
LoRa gateway, we utilize a COTS LoRa gateway [42,51]. To capture realistic performance,
we conduct experiments both indoors and outdoors, as these represent typical deployment
scenarios for LoRa networks. Indoor settings often involve higher multipath propagation and
increased interference due to walls and objects, whereas outdoor conditions are more affected
by non-line-of-sight (NLoS) propagation, with no direct line-of-sight to nodes. For outdoor
experiments, the same central and distributed controllers were used, but with the gateway
located outside the laboratory. Unlike the indoor setup, where many nodes had line-of-sight
to the gateway, the outdoor setup had no nodes in direct line-of-sight to the gateway.

The experiment workflow. Before each experiment, the central controller generates a
unique pre-compiled binary program for each LoRa node, as each node’s schedule is distinct,
even under the same protocol. Once devices are confirmed as ready, the central controller
issues a start command to initiate the experiment. Each LoRa packet in our experiments
contains a 26-byte payload with the following data: 1) node ID, 2) a packet counter, 3)
transmission start time, and 4) padding bits.

An experiment includes the following steps: loading a unique schedule consisting of
multiple test cases into each LoRa node, nodes awaiting a start signal in terms of a gateway
beacon and upon which executing super-frame by super-frame until all the test cases are
completed. Upon receiving the first gateway beacon, all nodes set time t = 0 and transmissions
follow the schedule. The schedule for multiple test cases are loaded one after the other
sequentially for convenience;

The LoRa devices in our testbed utilize built-in Temperature Compensated Oscillators
(TCXOs) to maintain synchronization over prolonged periods. By sampling the micro-
controller time every 30 seconds over one hour, we observed no drift at the second-level
accuracy. Hence, we set our slot size as a multiple of unit-second in our experiments.
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7.2 Test Case Generation and System Performance Evaluation

Test case generation. In our experiments, multiple test cases were deployed in three
groups consisting of 8, 24 and 40 node testbeds to cater for low, moderate and high
density deployments. We fix the minimum period, p1, to 20 seconds. This is a reasonable
sensing/actuation period for real-time LPWAN applications [52]. For each test case, we
selected at least four different period values — including the mandatory period of 20 seconds

— and randomly chose the remaining period values such that their Least Common Multiple
(LCM) did not exceed 720 seconds, due to storage limitations of the micro-controller. Each
node was then randomly assigned a period from the selected list, ensuring that every period
was allocated to at least one node. Finally, nodes were assigned SFs at random.

We set the following slot parameters calculated with respect to a packet size of 26 bytes.
We selected the slot lengths (L) as 1 second for SF7, SF8 and SF9 transmissions, 2 seconds
for SF10 and SF11 transmissions, and 4 seconds for SF12 transmissions. These are sufficient
to accommodate the transmissions for the assigned SFs.

The duration allocated for the beacon segment is 2 seconds as the packet size for beacon
is comparatively small and therefore requires only 2 seconds to transmit even with SF12.
In our experiments, we set TT DMA to be fixed at 10 seconds, followed by a multicast ACK
segment of 3 seconds and a retransmission RTx segment of 5 seconds at the end of the
super-frame. This ensures that even a SF12 transmission with a slot length of 4 seconds
can attempt a retransmission in the RTx segment if required with an additional time of one
second allocated for LMAC’s DIFS and backoff mechanism.

Demand for each test case, D, is calculated as the ratio of total slot lengths occupied by
the messages generated by M to 8 times the total time duration for an hyper-frame. Test
cases were then categorized by demand levels: D ∈ [0.01, 0.15] as low, D ∈ (0.15, 0.3] as
moderate (mod), and D ∈ (0.3, 0.5] as high. Note that demand values higher than 0.5 are
not feasible since TT DMA is exactly half the duration of a super-frame in our experiments.

To achieve specific target demands ranging from 0 to 0.5, we systematically adjusted
the periods and SFs of multiple nodes. Specifically, to increase demand, we decreased
the periods (resulting in more frequent transmissions) or increased the SFs (leading to
longer slot durations) and vice versa. These adjustments are performed iteratively on
multiple nodes ensuring that the period and lcm requirements are met. Finally, the demand
is recalculated after each iteration to check whether it is within an acceptable margin of ±0.01.

Baselines. We compare with two baselines, RTPL and RTLS. We deploy RTPL on our testbed
exactly as recommended in [16]. RTPL by design allocates a significantly higher duration than
necessary for all SFs. For example, an SF7 packet of 26 bytes with an airtime of 61.7 ms is
allocated 7 seconds as recommended in RTPL. In Section 7.3, we remove this limitation when
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Figure 7 Performance Comparison of Three Protocols (LoRaHART, RTPL, RTLS) For Indoor as well
as Outdoor Experiments.

evaluating the schedulability of RTPL using our super-frame structure for a fair comparison.
This under-utilization leads to inefficient use of the spectrum and hence RTPL could not
schedule any moderate/high demand test cases in our experiments. For RTLS, we use slot
lengths ranging from 3 seconds for SF7 to 15 seconds for SF12. These durations are calculated
based on a 26-byte data packet as suggested in [15].

Finally, for each demand range, we selected the test cases that were deemed schedulable
by the protocols (all three for the low range, and RTLS and LoRaHART for the moderate and
high ranges). As such, we deployed 20 test cases for each demand range on the testbed.

Results. In Fig. 7, we present the experiment results using standard box-plots comparing
the performance of the three protocols in terms of Packet Reception Ratio (PRR) over the
hyper-period. If a packet is successfully received and demodulated by the gateway before
its deadline, then it contributes to PRR. Note that a packet could fail to be delivered to
the gateway due to inherent transient failures of the wireless medium. Although protocols
like LoRaHART and RTPL reduce the impact of such failures by supporting retransmissions,
nevertheless they cannot deterministically guarantee packet delivery. Hence, the PRR for a
test case can be lower than 1 even if a test case is deemed to be schedulable by a protocol.
Figs. 7a and 7b show the PRR for various values of demand in the low range (D ∈ [0.01, 0.15])
comparing the performance of all three protocols; Fig. 7a (likewise Fig. 7b) illustrates the
results for indoor (likewise outdoor) experiments. Similarly, Fig. 7c illustrates the results for
moderate and high demand ranges, comparing the performance of LoRaHART and RTLS.

Figs. 7a and 7b show that for the low demand range, LoRaHART significantly outperforms
both RTPL and RTLS in terms of achieved PRR, with its mean PRR value being arbitrarily
close to 1. In particular, for the indoor setting, the mean PRR value for LoRaHART is 0.98,
which is 25% higher than the mean PRR for RTPL and 8% higher than the mean PRR for
RTLS. Similarly, for the outdoor setting, the mean PRR value for LoRaHART is 1, which is
30% higher than the mean PRR for RTPL and 10% higher than the mean PRR for RTLS. It
is noteworthy that the performance of LoRaHART does not vary much between the indoor
and outdoor settings, illustrating its robustness and superior ability to handle transmission
failures. In contrast, RTPL exhibits several missed deadlines, mainly due to demodulation
issues arising at the gateway from more than 8 concurrent transmissions. The degradation for
RTPL is more pronounced with increasing demand and noise (outdoor vs. indoor), which is
expected. RTLS, on the other hand, shows better performance than RTPL, because by design
it limits the number of concurrent transmissions to no more than 6, one per SF. However,
RTLS still has a much lower PRR than LoRaHART, due to the absence of retransmissions.

In Fig. 7c we compare LoRaHART and RTLS for moderate and high demand values in
the indoor setting (results are similar for the outdoor setting, but omitted due to space
constraints). Here as well, LoRaHART significantly outperforms RTLS, achieving a mean PRR
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of 0.97, which is 24% higher than the mean PRR for RTLS. A final remark is that both RTPL
and RTLS show much greater variability in their PRR values when compared to LoRaHART,
and this is because, unlike LoRaHART, they both allow multiple concurrent transmissions with
different SFs in the same channel. Although LoRa specification allows for such concurrency,
it typically reduces the signal-to-noise ratio leading to lower PRRs.

Recall from Section 3 that a COTS LoRa gateway has only 8 concurrent demodulators.
Fig. 8 shows, from t0 to t1 (likewise from t2 to t3), a capture of all the 8 channels during the
runtime of RTPL (likewise LoRaHART). It can be seen that channels cumulatively occupy more
than 8 concurrent transmissions in RTPL, which cannot be successfully demodulated.

Our experimental observations reveal important performance implications for RT-LoRa
when compared to LoRaHART. Like RTPL, RT-LoRa schedules the maximum number of parallel
transmissions allowed, without restricting the number of CH/SF combinations. As a result, it
faces the same gateway limitation on concurrent demodulations as RTPL. Under high network
loads, when concurrent transmissions exceed hardware capacity, this bottleneck can lead
to degraded Packet Reception Rates (PRR) as shown in Figure 7. In addition, recall that
RT-LoRa does not incorporate any retransmission mechanisms for failed transmissions. This
will further reduce the effective PRR for RT-LoRa even in comparison to RTPL.

7.3 Schedulability Evaluation
In this section, we evaluate the schedulability of LoRaHART, RTPL and RTLS, using their
acceptance ratios which measures the fraction of test cases deemed schedulable. To ensure
a fair comparison, experiments were conducted within the constraints of a COTS LoRa
gateway, which limits the total number of concurrent transmissions to 8. Further, both
RTPL and RTLS were adapted to use our super-frame structure along with the multicast ACK
so that the underlying TDMA windows available for scheduling are identical (10 seconds
in each super-frame having a total duration of 20 seconds). Additionally, we disabled the
retransmission segment, RTx, since the focus of these evaluations are on schedulability.

RTLS was implemented using the same algorithm described in Section 1, with at most 6
concurrent transmissions, one per SF, and random channel assignment. Unlike RTLS, RTPL
originally allows up to 48 concurrent transmissions, which exceeds the gateway’s hardware
capabilities. To restrict concurrency to at most 8, we limit the number of SF-channel
combinations to at most 8 at any time instant, i.e., we restrict RTPL to only schedule at most
8 of the 48 available SF-channel combinations at any time instant. With this restriction,
we use RTPL’s scheduling algorithm to allocate slots within the TDMA segments of the
super-frames. Again to ensure fair comparison, we also do not schedule retransmissions under
RTPL; only one transmission per message instance is scheduled within the TDMA segments.
Furthermore, we utilize the same slot lengths (L) for all the protocols, i.e., 1 second for SF7,
SF8 and SF9, 2 seconds for SF10 and SF11, and 4 seconds for SF12 transmissions.
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Figure 8 A Spectrogram Showing Channel Utilization
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Figure 9 Schedulability Comparison – LoRaHART vs. RTPL vs. RTLS.

Results. Fig. 9 presents the results of the schedulability experiments that were conducted.
Fig. 9a shows the acceptance ratios of the three protocols when they were evaluated with
1000 test cases across a variety of demand ranges. These test cases were generated using
the same technique as described in Section 7.2, with 250 test cases for each demand range
shown in the figure. The acceptance ratio of LoRaHART is significantly higher than that
of RTLS, clearly demonstrating the superiority of the proposed scheduling strategy. RTLS
heavily under-utilizes available channels due to its SF based scheduling, with spectrum not
being used efficiently in each frame. This accumulates significantly across the hyper-frame,
resulting in reduced schedulability for high-demands. When compared to RTPL, LoRaHART
has an overall acceptance ratio that is 10% higher, with the gap increasing for higher demand
values. Taken together with the outcomes in Section 7.2, we can conclude that LoRaHART
dominates both RTPL and RTLS in terms of acceptance ratio as well as PRR, and hence in
terms of the ability to support LoRa-based real-time communication.

We also conducted experiments to evaluate the performance of the schedules in the above
test cases that all use the same super-frame structure. For this comparison, we chose 20
schedules with the highest demands for each protocol. Note these test cases may be different
for each protocol. The PRR drop in Figure 9b for LoRaHART validates the gain achieved by
the retransmissions using LMAC shown in Figure 7. We expect PRR to be similar across the
three protocols, because all the schedules respect the COTS LoRa gateway restrictions and do
not allow retransmissions. Hence, we need another metric such as throughput which measures
the number of packets successfully delivered for comparison. However, an algorithm that
prioritizes packing packets of lower SFs may achieve higher throughput due to their shorter
airtimes. Such algorithms fail to fit the diverse range of SFs necessary to accommodate
nodes operating across a LoRa network. This phenomena renders throughput an inadequate
performance metric in this comparison. To address this limitation, we employ a new metric –
Effective Cumulative Airtime Utilization (ECAU). ECAU reflects an algorithm’s packing
efficiency in terms of received packets weighted by their corresponding airtime utilization.
ECAU is defined as:

∑
mz

Ttxz
, where mz denotes a message, Ttxz

denotes its airtime and
the sum is computed across all the messages received within the hyper-period.

Fig. 9c shows the ECAU values for the three protocols across the 20 test cases. In the
figure, RTPL1 is the implementation of RTPL as described earlier in this section, and RTPL2 is a
variant which ensures that the 8 concurrent transmissions are mapped to 8 different channels
similar to LoRaHART. On an average, the ECAU value for LoRaHART is 45% higher than
RTPL1 and RTPL2 and 200% higher than RTLS. This clearly demonstrates that LoRaHART is
significantly better in managing airtime at higher demands, when compared to the baselines.
This, taken together with the acceptance ratios, shows that LoRaHART outperforms both
RTPL and RTLS in terms of effectively utilizing the LoRa wireless medium for real-time
communication, with the performance gap widening as message demand increases.
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7.4 Robustness of LoRaHART to Fault Injections

In this section, we conduct an experiment to show the value of introducing LMAC integrated
retransmission slots in the LoRaHART super-frame structure. To this end, we evaluate both
RTPL and LoRaHART under three fault injection ratios: 10%, 20% and 30% of SF10 interference.
An interference ratio of 10%, for instance, corresponds to a 10% demand across all 8 channels
in SF10, generated by random transmissions confined strictly to the TDMA segments. To
implement these conditions, we deploy 5 interferer nodes configured to transmit on SF10,
collectively achieving the desired interference ratio. We repeat the experiment for each
algorithm under all interference ratios. The importance of retransmission slots is seen
from Fig. 10a. The retransmission slots offer gains for both the algorithms, however, due
to integration of LMAC, LoRaHART uses the retransmission slots more optimally. When
more than 8 nodes fail to receive acknowledgments at some instant, by design, RTPL will
initiate retransmissions in the next slot for all those nodes simultaneously. This results
in the transmission of large number of frames at once leading to sub-optimal reception at
gateway. In contrast, the LMAC-integrated retransmission slot in LoRaHART mitigates this
issue. These gains arising from efficient retransmissions also highlight the importance of
effective utilization of acknowledgements under LoRaHART when compared to RT-LoRa which
does not provide any such retransmission mechanism.

7.5 Energy Consumption Analysis

In the following, to quantify the energy usage for LoRaHART, we evaluate the transmission
energy of a node per super-frame operating at 14 dBm. Energy consumption can be
computed as:

Etotal = Eidle + Etx + (1− PRR) · ERTx;

ERTx = NBO · ECAD + Etx

Here, Etx represents the energy for a successful transmission, Eidle captures idle listening
and beacon/ACK reception phases, and ERTx accounts for retransmission energy cost when
packets are lost (i.e., when PRR < 1). NBO denotes the backoff duration (in slots) selected
during the LMAC-based retransmission window, and ECAD is the energy consumed per CAD
operation. These equations reflect the specific flow and behavior of LoRaHART (including
opportunistic retransmissions).

We conducted these measurements on our 40-node testbed described in Section 7.1.
Energy consumption was computed by measuring the duration and current draw of each
radio state—transmit, receive (idle), and CAD, using the manufacturer’s specifications for
the SX1301 chip [41]. Each node transmits exactly one packet per super-frame as per the
TDMA schedule, and may opportunistically retransmit once in the RTx window, based on
the ACK feedback.

The reported values represent average energy consumed by a node per super-frame, given
by the spreading factor (SF) used. For example, SF7 nodes consume approximately 8 mJ per
super-frame. In contrast, energy consumption for SF8, SF9, SF10, SF11, and SF12 nodes
are observed to be approximately 20 mJ, 49 mJ, 95 mJ, 148 mJ, and 220 mJ respectively.
These numbers include the energy spent in scheduled transmission, potential retransmissions,
and beacon/ACK listening durations. Since a node uses a fixed SF across frames unless
reconfigured, its per-frame energy consumption remains stable over time.
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Figure 10 LoRaHART’s Fault Injection Tolerance and LMAC Probability Model Validation

7.6 Experimental Validation of the LMAC Probability Model
To validate our probabilistic model for node contention during the RTx window, we compare
the number of successful transmissions in experiments with the theoretical expected value
(E[# successes]), given the nodes that failed in the corresponding TDMA window.

The experiment result is obtained by averaging the number of successful transmissions over
20 super-frames in the RTx window. Each failed node from the TDMA window retransmits
in the RTx window using the same CH and one higher SF (except SF12 in which case we use
the same SF value) when compared to the original allocation by LoRaHART. As previously
discussed, each CH/SF pair operates independently as they are orthogonal, and hence Psuccess

and E[# successes] for each CH/SF pair are calculated separately. Once the expectations
for each pair are determined, summing them across all possible CH/SF groups provides the
overall theoretical expectation for each super-frame.

As illustrated in Figure 10b, the theoretical predictions closely match the experimental
data, with an experimental average of 4.67 and a theoretical average of 5.5 successful
transmissions, exhibiting only a small deviation. Further, we observed that the theoretical
expectation for each super-frame is no smaller than the corresponding experiment result,
thus validating the accuracy of our probabilistic model. Under ideal channel conditions, the
predicted and observed number of successful transmissions would be identical. However,
external interferences and the gateway’s imperfect reception introduce minor discrepancies,
accounting for the gap in our idealized assumptions.

8 Conclusion

In this work, we tackled the challenge of real-time scheduling of periodic transmissions
in COTS LoRa-based systems by addressing two critical limitations of standard LoRa
gateways—uplink-downlink asymmetry and limited concurrency. To accommodate these
constraints, we proposed a new protocol called LoRaHART and developed a hardware-
aware super-frame structure supporting multicast acknowledgments and opportunistic
retransmissions. We also devised efficient algorithms to pack messages into super-frames,
assign them to channels, and schedule their transmissions. Our comprehensive evaluation
on a 40-node LoRa testbed demonstrated the effectiveness of our approach in improving
real-time performance and reliability. Looking ahead, we plan to consider multi-gateway
setups and evaluate compliance with regulatory constraints such as the 1% duty cycle
requirement. Additionally, we would like to extend our probabilistic model to incorporate
non-ideal channel effects—such as external interference—to accurately reflect real-world
conditions. Moreover, we aim to broaden our scheduling framework by devising algorithms
that support transmissions even when deadlines do not align with super-frame boundaries.
Finally, a key future direction is to integrate downlink transmissions into our super-frame
structure, closing the loop for sensor-actuator communication.
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